Automatic Segmentation of Overlapping Fish Using Shape Priors

نویسندگان

  • Sigmund Clausen
  • Katharina Greiner
  • Odd Andersen
  • Knut-Andreas Lie
  • Helene Schulerud
  • Tom Kavli
چکیده

We present results from a study where we segment fish in images captured within fish cages. The ultimate goal is to use this information to extract the weight distribution of the fish within the cages. Statistical shape knowledge is added to a Mumford-Shah functional defining the image energy. The fish shape is represented explicitly by a polygonal curve, and the energy minimization is done by gradient descent. The images represent many challenges with a highly cluttered background, inhomogeneous lighting and several overlapping objects. We obtain good segmentation results for silhouette-like images containing relatively few fish. In this case, the fish appear dark on a light background and the image energy is well behaved. In cases with more difficult lighting conditions the contours evolve slowly and often get trapped in local minima

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors

An automatic multi-organ segmentation pipeline is presented. The segmentation starts with stripping the body of skin and subcutaneous fat using threshold-based level-set methods. After registering the image to be processed against a standard subject picked from the training datasets, a series of model-based level set segmentation operations is carried out guided by hierarchical shape priors. Th...

متن کامل

Level Set with Embedded Conditional Random Fields and Shape Priors for Segmentation of Overlapping Objects

Traditional methods for segmenting touching or overlapping objects may lead to the loss of accurate shape information which is a key descriptor in many image analysis applications. While experimental results have shown the effectiveness of using statistical shape priors to overcome such difficulties in a level set based variational framework, problems in estimation of parameters that balance ev...

متن کامل

Segmentation of abdomen MR images using kernel graph cuts with shape priors

BACKGROUND Abdominal organs segmentation of magnetic resonance (MR) images is an important but challenging task in medical image processing. Especially for abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult task due to the fact that MR images are affected by intensity inhomogeneity, weak boundary, noise and the presence of similar objects close to each other. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007